The Asymptotic Number of Planar, Slim, Semimodular Lattice Diagrams

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Matrix of a Slim Semimodular Lattice

A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim semimodular lattices play the main role in G. Czédli and E.T. Schmidt [5], where lattice theory is applied to a purely group theoretical problem. Here we develop a unique matrix representation for these lattices.

متن کامل

Slim Semimodular Lattices. I. A Visual Approach

A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim lattices are planar. Slim semimodular lattices play the main role in [3], where lattice theory is applied to a purely group theoretical problem. After exploring some easy properties of slim lattices and slim semimodular lattices, we give two visual structure theorems for slim semimodular lattices.

متن کامل

Frankl’s Conjecture for Large Semimodular and Planar Semimodular Lattices

A lattice L is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element f ∈ L such that at most half of the elements x of L satisfy f ≤ x. Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let m denote...

متن کامل

Slim Semimodular Lattices. II. A Description by Patchwork Systems

Rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009. By a patch lattice we mean a rectangular lattice whose weak corners are coatoms. As a sort of gluings, we introduce the concept of a patchwork system. We prove that every glued sum indecomposable planar semimodular lattice is a patchwork of its maximal patch lattice intervals “sewn togeth...

متن کامل

Notes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices

A recent result of G. Czédli and E. T. Schmidt gives a construction of slim (planar) semimodular lattices from planar distributive lattices by adding elements, adding “forks”. We give a construction that accomplishes the same by deleting elements, by “resections”.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Order

سال: 2015

ISSN: 0167-8094,1572-9273

DOI: 10.1007/s11083-015-9361-0